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1. Introduction

Coarsening is caused by gas diffusion through the liquid in a foam, and results in the growth
of large bubbles while small ones shrink [1].

This process is not well understood in wet foams, where applications include fire suppression
[2]. What are the growth rates of individual bubbles at moderate liquid fractions φ, where
Plateau’s laws are not satisfied, and how does the foam’s macroscopic evolution change
with φ?

Experiments are challenging due to drainage [3], and simulations [4, 5] have not yet fully
reproduced existing experimental results.

We present a novel numerical model for coarsening in two-dimensional wet foams, which
allows accurate bubble deformation and gas diffusion through films and Plateau borders,
and which implements a qualitatively-realistic disjoining pressure.

We exhibit results obtained by applying this model to coarsening in a defective hexagonal
foam, where we investigate a transition in behaviour between larger and smaller φ.
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Figure 1: The structure of a two-dimensional wet foam.

Figure 2: Simulated coarsening of a defective hexagonal foam with
liquid fraction φ = 0.056.
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2. Structural model of the foam

Using a finite-element approach, the liquid/gas interfaces are vertices
joined by straight edges. Bubble rearrangements occur naturally as there
is no intrinsic difference between the thin films and Plateau borders.

The foam’s total interface energy is [1]

E =

∫
Γ
γ(r) dl; (1)

where Γ represents all liquid/gas interfaces. The surface tension γ
varies with position r due to the disjoining pressure, stopping overlaps.

We equilibrate the foam by using conjugate gradient iterations to
minimise E, subject to fixed bubble areas. Hence, our approach is
quasi-static, suitable for the slow [6] process of coarsening.

Our approach adapts that of ref. [7], and is similar to that of ref. [8]. To
our knowledge, this approach has not yet been applied to coarsening.

We implement our simulations in the Surface Evolver [9].

3. Disjoining pressure

We use a qualitatively-realistic DLVO [10] disjoining pressure

Π(h) = A (1− αh) e
−h/h0 , (2)

where h is the film thickness. The parameters are set to obtain an
equilibrium film thickness h0 and film-border contact angle θ
(Figure 4). Although we set θ = 0, Π is still attractive at larger h.

The surface tension depends upon Π via [10]

γ(h) = γ∞ +
1

2

∫ ∞
h

Π(s) ds, (3)

where γ∞ is the surface tension of an isolated interface.

The interfaces are curved in general, so we take h to be the shortest
distance to a neighbouring interface (Figure 3). Similarly to ref. [11], we
ignore film curvature in equations (2–3) as an approximation.
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Figure 3: The discretisation in our structural model, including
the local film thickness h.
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Figure 4: The film-border contact angle θ [11]. Our results use
θ = 0.
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Figure 5: Our model disjoining pressure for θ = 0.
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4. Validation of the structural model

We validate our structural model using the rheology of a sheared
hexagonal foam (Figure 6) [12, 13], since this is independent of our
coarsening implementation.

We apply a simple shear to a periodic domain containing one bubble
with effective radius R, measuring the shear stress τyx at each strain ε.

Our stress-strain curves (necessarily for film thickness h0 > 0) are
compared with ref. [12] (for h0 = 0) in Figure 7, using that the bubble
deformation is the same for any h0 at a fixed effective liquid fraction
φeff [12]. We observe good agreement, which improves for smaller h0.
The additional peaks in our curves are due to the disjoining pressure’s
attractive component.

We plot our foam’s shear modulus G, fitted using the analytic
stress-strain relation [13], in Figure 8 alongside the analytic result [13]

G =

√
1− φ

2π

31/4γ∞

R
. (4)

Close agreement is observed, except near to the jamming transition
φ ≈ 0.09 [1] — possibly because ref. [13] assume that interfaces are
either parts of films or Plateau borders, with no transition region [1].

Figure 6: A finite portion of a simply-sheared hexagonal foam, at strain ε and with liquid
fraction φ = 0.02. We let ε = 0 correspond to a symmetric state.
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Figure 7: Comparison of simulated stress-strain curves with ref. [12], using 384 vertices.
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Figure 8: Comparison of our simulated shear modulus with ref. [13], for several liquid fractions
φ, film thicknesses h0 , and numbers of vertices m. The error bars relate to the fit of G.
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5a. Coarsening

The concentration c of gas dissolved in a foam’s liquid is given by
Laplace’s equation ∇2c = 0, with c = Hp on the interfaces; p is the
bubble pressure, and H is Henry’s constant [1, 14]. The gas
concentration gradients result in its diffusion, and thus coarsening [14].

Following ref. [14], we approximate the gas flow rate per unit length f ,
between adjacent bubbles through an element of interface, by [1]

f =
κH∆p

h
; (5)

where κ is a constant, ∆p is the pressure difference between the
bubbles, and h is the local film thickness. This is exact for infinite
parallel planar interfaces.
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Figure 9: A disordered foam with liquid fraction φ = 0.103 before and after a period of
coarsening. A is a large bubble that has grown, and B is a small bubble that has shrunk.

5b. Defective hexagonal foam

We use a defective hexagonal foam as a model system for coarsening.
These have been studied numerically in the dry limit [15], and at liquid
fraction φ = 0.05 [16]. We are not aware of any systematic
investigations over a range of φ.

The system is obtained by bursting one film in a monodisperse
hexagonal foam (Figure 10) [17]. This is termed a Type I defect [16].

No coarsening occurs in a monodisperse hexagonal foam [6]. However,
in the dry limit, a Type I defect grows under coarsening without bound,
becoming circular, with a linearly increasing radius [15, 17].

At φ = 0.05 considered by ref. [16], a disordered region instead
emerges around the initially defective bubble, which grows faster than
the latter and contains additional large bubbles.

Figure 10: A defective hexagonal foam with liquid fraction φ = 0.021. We refer to the large
bubble as the initially defective bubble.
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6. Coarsening results for the model system

We coarsen a defective hexagonal foam at liquid fractions
φ ∈ [0.021, 0.103], in a periodic domain with 255 bubbles. The film

thickness is h0 ≈ 10−2R, where R = 0.909 is the effective bubble
radius in the initial hexagonal foam, for which φ = 0.103 is the
jamming transition at this h0 [12].

For φ . 0.091, the dry-type coarsening behaviour of ref. [15] is
observed (Figures 12–13), including the eventual linear growth of the
effective radius Rd of the initially defective bubble (Figure 11). The
growth rate decreases as φ increases, because the gas flow is reduced by
larger Plateau borders [14].

For φ & 0.091, the wet-type behaviour of ref. [16] emerges
(Figures 14–15). Hence, we find a larger transition liquid fraction than
ref. [16], which may be due to the allowed deformation of our bubbles,
unlike in the Durian bubble model they use.

It remains possible that a wet-type disordered region emerges for smaller
φ at times beyond the end of our simulations. However, this region
arises before half the stopping time at φ = 0.091.

Some dependence on the simulation convergence parameters remains for
the bubble configurations in the wet-type disordered regions. However,
the corresponding statistics (Section 7) are robust, as is the φ value at
which the observed transition occurs. We have not yet investigated
dependence upon h0.
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Figure 11: The effective radius of the initially defective bubble against dimensionless time, for
several liquid fractions.

Figure 12: Foam with φ = 0.021 coarsened
to dimensionless time t = 10.

Figure 13: Foam with φ = 0.085 coarsened
to dimensionless time t = 40.

Figure 14: Foam with φ = 0.091 coarsened
to dimensionless time t = 50.

Figure 15: Foam with φ = 0.103 coarsened
to dimensionless time t = 50.
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7. Statistical results in the defective region

Similarly to ref. [18], we define the defective region around (and
omitting) the initially defective bubble to contain all other bubbles
without exactly 6 neighbours, or with a neighbour without 6 neighbours.

In Figures 16–17, we plot the mean bubble area 〈A〉 and geometric
disorder [1]

σA =

√
〈A2〉
〈A〉2

− 1 (6)

in the defective region, against the effective radius Rd of the initially
defective bubble (for comparability between different liquid fractions φ).

For φ . 0.091 (the dry-type regime), the curves remain close for
nearby φ. The geometric disorder appears to oscillate around a constant
value, consistent with the existence of a previously-suggested scaling
state in the defective region [18].

For φ & 0.091 (the wet-type regime), the curves eventually separate
from the dry-type curves, increasing thereafter almost monotonically at
higher φ; 〈A〉 is qualitatively consistent with ref. [16]. This coincides
with the eventual appearance of large bubbles in the defective region.

Hence, 〈A〉 and σA in the defective region are quantitative measures of
the transition between dry-type and wet-type behaviour. The
polydispersity behaves similarly, although patterns in µ2 (the variance of
the number of neighbours) are not as easy to discern.
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Figure 16: The mean area of bubbles in the defective region against the initially defective
bubble’s effective radius, for various liquid fractions.
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Figure 17: The geometric disorder in the defective region against the initially defective bubble’s
effective radius, for various liquid fractions.
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8. Outlook

We have applied our exhibited numerical coarsening model to defective
hexagonal foams, giving evidence that their behavioural transition,
which is quantified by features in the bubble statistics, occurs at liquid
fraction φ ≈ 0.09.

Our primary aim is to use our simulation approach to study coarsening in
disordered wet foams, in two and three dimensions. Progress in adapting
a similar structural model to three dimensions was made by ref. [19].

Such work may contribute to answering unresolved questions regarding
wet-foam coarsening, including the growth rates of individual bubbles at
intermediate liquid fractions φ for which Plateau’s laws do not hold.

Recent experiments on the International Space Station should provide
data against which our simulations may be compared [20].

We also intend to continue investigating defective hexagonal foams, to
better understand the cause and properties of the behavioural transition.
This work may be relevant to disordered foams, where any behavioural
transitions would likely be more challenging to identify.

We aim to further validate our coarsening model by comparing its
predictions of bubble growth rates with those obtained via accurate
solutions of Laplace’s equation.
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